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ABSTRACT

Spline-based computational procedures for parameter estimation and

optimal control problems involving delay and partial differential equations

are outlined. Brief discussions are presented reporting on application of
the ideas to compute feedback controls for delay systems, to estimate
variable coefficients in population dispersal models, and to estimate para-

meters in higher order models arising in elasticity.
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DISTRIBUTED SYSTLM OPTIMAL CONTROL AND PARAMETER ESTIMATION: COMPUTATIONAL
TECHNIQUES USING SPLINE APPROXIMATIONS

H. T. Banks

Lefschetz Center for Dynamical Systems, Division of Applied Mathematics,

Brown University, Providence, RI, USA

Abstract. Spline-based computational procedures for parameter estimation and
optimal contrel problems involving delay and partial differential equations
are outlined. Brief discussions are presented reporting on application of
of the ideas to compute feedback controls for delay systems, to estimate
variable coefficients in population dispersal models, and to estimate para-
meters in higher order models arising in elasticity.

revwords. Parameter estimation; feedbackh controls; delay and distributed
systems; computational methods; splines; wind tunnels; ecology; elasticity.

INTRODUCTION

In this note we present a brief summary of
some computational methods that have proven
useful in optimal control (both open loop and
feedback) and parameter estimation problems
for certain distributed systems. We first out-
line the basic ideas which are common to our
approach whether we are dealing with function-
al differential equations (FDE) or partial
differential equations (PDE) of hyperbolic or
parabolic type. Roughly speaking, in each
case one views the system under consideration
as an abstract system

T(t) =of(q)z(t) + F(q,t)

2(0) = z, (N

-

in an appropriately chosen Hilbert space 2.
In the event that the operator & depends on
parameters ¢ to be estimated, one then has
data or "observations', say z(ti), and one

attempts to choose a parameter q from an
admissible set Q so as to yield a best fit
of the model (1) to the data. For optimal
control problems, the parameters q are pre-
sumed fixed and known and F in (1) is a
control input term, say F(t) = Bu(t). Then
one has a performance measure J depending
on z and u, and an admissible control set
% (either open loop or feedback). One seeks
a u in% that minimizes J subject to (1).

For either FDE or PDE systems, these problems
involve infirite-dimensional state systems
and hence computational schemes must be based
on some type of approximation idea. The
approach we describe here entails choosing

a sequence of finite dimensional subspaces

ZN of Z generated by basis elements con-

sisting of splines (linear, cubic, or quintic

in the examples discussed below). One then

approximates the system (1) (and the corres-

ponding control or estimation problem) in the
N

subspace I by the system

°N N N N
2 (t) =f (q)z'(t) + P'F(q,t)
N N
2(0) = Pz,
where Ph is the canonical orthogonal projec-

tion of Z onto Z and @™ = PPV This
results in an approximate estimation or con-
trol problem entailing a finite dimensional
state space to which standard computational
packages can be applied.

The fundamental convergence theory which can
be used in either control or parameter esti-
mation problems is based on semigroup approx-
imation results. Briefly the ideas are as
follows (details differ depending upon whether
one is treating FDE or PDE). One first demon-
strates that o (q) satisfies a unifo-m dis-
sipative inequality in Z (such as<32’hq):.§>
<wz,2» for z € Dom (H(q))sand (q)

(or some maximal dissipative extension) gen-
erates a Co—semigroup T(t;q). The approxi-
mating operatorsjlfh(q) are defined, as we

have alreadv indicated, byisz(q)=rhg{;q]PN,
and generate a stable family of schemes such
that |expl®N(Q)t]] < 1e*t where M and

w are independent of q and N. One uses
standard estimates from spline approximation

theory to argue that ,Q’N(q): + q)z in
an appropriate sense. One then employs the
Trotter-Kato theorem (a functional-analytic
version of the Lax Equivalence theorem:
stability plus consistency yvield convergence)

to establish that expﬁ]’N(q)t] + T(t;q)
strongly in Z, and, moreover, that

S
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N ,
27(t;q) » 2(t;q) where :h and 2 are solu-
tions of (2) and (1), respectively. These con-
vergence results are used in turnNto argue

existence of an estimate q=lim q h
for the parameter estimation problem involving

(1), where {q k} is some subsequence of {ﬁk),

=N . ; .

Q" a solution of the estimation probelm for
(2}. In the case of optimal control problems,
one uses the convergence results to establish

-N -
convergence of a subsequence u K to 0, where

-N - .
u and u are solutions of the control prob-

lems for (2) and (1), respectively.

The necessary basic spline approximation theory
for FDE can be found in (Banks and Kappel, 1979)
whereas applications of the ideas to parameter
estimation and control problems are given in
(Banks, Burns, and Cliff, 1981), (Banks and
Daniel, 1981a), (Daniel, 1982). Fundamental
theory for PDE estimation and control prob-
lems is developed in (Banks and Kumisch, 1981)
and (Banks, Crowley, and Kunisch, 1981). We
shall not discuss further the theoretical
aspects of our approach in this presentation;
rather we shall briefly outline several speci-
fic problems in which use of these methods has
been quite fruitful. The first application
involves optimal feedback control for a delay
svstem problem, while the second and third

deal with parameter estimation problems for
PDE.

FEEDBACK CONTROL FOR DELAY SYSTEMS

The problem of constructing feedbach controls
for hereditary or delay systems is not new and
there is a rather large literature which we
shullnot discuss here. Our own renewed interest
in this problem was motivated by problems
arising in the design of controllers for a
liquid nitrogen wind tunnel (the National
Transonic Facilitv ¢r NTF) currently under
construction by NASA at its Langley Research
Center in Hampton, VA. With this wind tunnel
it is expected that researchers will be able

to achieve an order of magnitude increase in
the Revnolds number over that in existing
tunnels while maintaining reasonable levels

of dvnamic pressure. Test chamber temperatures
(the Revnolds number is roughly inversely
proportional to temperature) wiil be maintained
at crvogenic levels by injection of liquid
nitrogen as a coolant into the airstream near
the fan section of the tunnel. In addition to
a gaseous nitrogen vent to help control pressure,
motor driven fans will be used as the primary
regulator of Mach number. Fine control of

Mach number will be effected through changes

in inlet guide vanes in the fan section.
Schematically, the tunnel can be depicted as

in Fig, 1.

FAN ol
SECTION |
INLEY
GUIDE
VANLS
{:t GN, LN,
VENT , INJECTION

L L

TES?
CHAMBER

Fig. 1.

The basic physical model relating states such
as Revnolds number, jressure, and Mach number
to controls such as LN, input, OGN, bleed,

and fan operation .nvolves a formidable set of
PDE (the Navier-Stokes theory} to describe
fluid flow in the tunnel and test chamber.

This model has, not surprisingly, proved to be
very unwieldy from a computational viewpoint
and is difficult, if not impossible, to use
directly in the design of sophisticated controi
laws. (Both open loop and feedback controllers
are needed for efficient operation of the
tunnel - and this is a desirable goal singe
cost estimates for liquid nitrogen alone arc

$6.5 » 106 per vear of operation.' In add.-
tion to the design of both open loop and
closed loop controllers, parameter estimation
techniques will be useful once datu fror the
completed tunnel is available (currert anuve-
tigations involve use of data from a | =
meter scale model of the tunncl!.

In view of the schematic in Fig. 1, 1t 1~ not
surprising that engineers te.g. See¢ (Armstrony
and Tripp, 1981) and (Gumas, 1978} have pro-
posed design of control laws for subsvstems
modeled by lumped parameter models (the
variables represent values of states and con-
trollers at various discrete locations in the
tunnel and test chamber) with transport delays
to account for flow times 1n sections of the
tunnel. A specific example 1v the model
(Armstrong and Tripp, 1981 for the Mach no.
control loop in which variations in the Mach
no. (1n the test chamber’ are tc first order,
controlled v variations an the inlet guide
vane angle setting (1n the fan section) 1.c.
Moy ~ &t 1y where 1 represents a trans-
port time from the fan section to the test
section. More previsels, the proposed equation

iite
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relating the variation &M (from steady state
operating values) in Mach no. to the variation
8 in guide vane angle is

ToM(t) + 8M(t) = k 80 (t-1)
while the equation relating the guide vane
angle variation to that éeA of an actuator

is .. . 2 2
SO (t) + 24uwéh(t) + w&(L) = o éeA(t).

Rewriting the system in vector notation, one
thus finds that the Mach no. control loop in-
volves a regulator problem for the equation

X(1) = ApX(t) + Apx(t-T) + Bou(t) (3)

where x = (&M, 63,50), u = éeA. Here the

control is the guide vane angle actuator in-
put. A similar 4-vector system problem can
be formulated in the case where one treats
the actuator rate 66A as the control -

see (Armstrong and Tripp, 1981), (Daniel, 1982).
Problems such as that just outlined led us to
consider the spline techniques of (Banks and
Kappel, 1979) for computation of feedback

controls in regulator problems governed by
n-vector systems

x(t) = L(x,) *+ Bu(t)
(x(0), x ¢(0),9)

(4)
o) =

where X, denotes the fuection s + x(t+s),

-r< s <0, and L(xt) =jz ij(t—rj) +

0 =
J A(s)x(t+s)ds with 0 =r_ < r < <<=

0 1
r. The cost functional is the usual integral
quadratic payoff

I(zgou) = J((x(0),x4),u) =

fwx(t)Dox(t) + u(t)Ru(t)

where t = x(t) 1is the solution of (4). As
is well-known (see the summary and references
to previous literature in (Gibson, 1980)) the
appropriate state feedback control is given
in terms of a functional

-1.T 0
u(xt) = -R 'B [Kox(t) + I Kl(s)x(t*s)ds] (5)
-r

where the gains K., K, satisfy certain Riccati

0’ "1

type equations. A detailed explanation of use
of the spline-based methods for computations

in these problems is given in (Banks and Rosen,
1982); we only outline the procedures here and
discuss our numerical findings for the NTF
example.

Briefly ther, or- reformulates the system (4)

as an abstract system (1) in the Hilbert space
2= R" x L(-r,0;RM) with z(t) = (x(t),x,).

The optimal feedback control is then given by

(see the summary in §4 of (Gibson, 1980))

o) = RID nz) (6)

with J = J(zpu) =< Nzg,200> where the

bounded linear operator II:Z + I js the solu-
tion of the Riccati algebraic equation (RAL}:

KA BRID D -0,

Here @ and 2 are operators on given b.
P.$) = (Bn,0) and Z("8) = (b, 0.
Carrying out the approximation steps outlincd
above (we used the first order spline sub-
spaces explained in detail in %4, p.509.35C
of (Banks and Kappel, 1979 for the culcula-
tions on the NTF example and a numher of other
test examples reported on in {Banks and Kes-un,
1982)) one obtains an approximating RAE cor-
responding to the associated regulator problem

for (2) in IV

VAR :Nd". BRI 2N -

This is given by

where N = P&YP’\, 2" - "2, 9% - g’
This equation has a matrix representation and
hence standard techniques - we used the ORACLS
package of Armstrong (1980) in our calculations
- can be emploved to calculate HN and the

resulting approximate optimal feedback control

0
Wy = rBT k(e jr 10 (s)x(t+5)ds) (7
-T

00 10 s
where HN , HN which

approximate the gains

are components of HN
Ko» K of (5).
We investigated the Mach no. control loop
problem of (Armstrong and Tripp, 1981) de-
scribedabove with the spline-based methods

and with the so-called "averaging" approxima-
tion method (a “zero-order" spline tvpe scheme-
which can also be developed in the context of
Walsh function approximations - that is not

of the form " = PP but nonetheless can
be used to compute gains in delay svstem prob-
lems - for details see (Gibson, 1980Y). for

this example the matrices in (3) have the form

-1/1 0 0 0 kh/3 0
= = 0
A0 0 0 1 Al ( 0 0
2 A

0 - w =25 0 0 0

0

BO = 01

o

with the parameter values given by 1 = 1,004
-

sec, r = .33 sec, w" = 36, 5 = .8, k = -, 011",

Calculations were carried out for the problem
of driving ¢M from -.1 to 0.0 (corresponding
to M varying from .8 to .9) and <o from
8.55 to 0.0 (corresponding to the guide vane
angle varving from 10.48° to a steady state

of 1.93°). Excellent results were obtained
even for low values of the approximation index
N (N = 2,4,8). The corresponding optimal con-
trols (7) appear to converge rapidly to an
optimal control of the form (6) (of course, we




do not know I for this example) and when used
as fec.back in (3), vield trajectories as
graphed in Fig. 2. (In Fig. 2 we compare
these with similar trajectories obtained in
(Armstrong and Tripp, 1981) where finite
difference techniques - assuming piecewise
constant controls - were used to discretize
the delay svstem before applying standard
regulator theory for discrete systems to cal-
culate the feedback controllers.)

10 .
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The spline method was computationally more
stable and in general more accurate than the
averaging wethod. [Doth metiious appear to
offer higher order amnroxirmations than the
finite difference techniques of (Armstrong
and Tripp, 1981). All three methods appear
to be adequate for the simple NTF example
we investigated.

We also tested the spline method (and compared
it with the averaging method) on a number

of other delay system regulator examples and
our findings are detailed in (Banks and

Rosen, 1982). In summary we found the spline
method generally at least as good as and in
some cases superior to the averaging method
with regard to computational stability,
accuracy, and rate of convergence. We refer
interested readers to (Banks and Rosen, 1982)

for detailed remarhs on the computations along
with some comments on theoretical aspects (see
also (Gibson, 1980) and (Kunisch, 1980, for
related discussions).

PARAMETER ESTIMATION IN POPULATION
DISPERSAL MODELS

An important problem to population ecologist:
involves modeling of dispersal or movement of
insects and other herbivores in vegetation
patches. There is a growing literaturc
(Levin, 1974, 1981), (Okubo, 1980,, iKure:.u,
1982) on the use of mathematical models, ¢« -
pecially ones entailing distributed svstems,
to investigate the effect of various types of
transport mechanisms on overall population
movement. Many important ecological invest:-
gations result in the need to solve an inverse
problem for a diffusion or more general trans-
port equation. Roughly speaking, given data
describing changing population densities of

a specie (or species) and some preliminary
hypotheses about boundary conditions and
transport functions (spatially, temporally or
perhaps even density dependent) in a proposed
model, one desires to estimate or identify
parameters (including the transport functions:
in the model and quantify the success (or lack
thereof) of the model in deccribing the data.
For example, typical models might involve the
general transport equation (Okubo, 1980, p.98)
(in one spatial variable) for population den-
sity u (here we mention only single specie
models but coupled equations for mulriple
species models could also be treated with the
ideas we outline) given from mass balance
considerations by

Gl vl @Y s
where the "directed movement™ or advective
(convective) term g; (Vu) contains a spa-
tially varying "velocity" term V = \(x). The
diffusion term is, as usual, a result of
assuming Fick's first law of diffusion, while
f represents a general birth/death term. In
such models it is often important to allow the
transport functions 2 and \ to vary spa-
tially, temporally, or even with population
density (o1 perhaps some combination of these).
Other basic transport assumptions or hyvpotheses
(e.g., see (Okubo, 1980, p.84-88), (Dobchanshy
and colleagues, 1979))lead to different models,
but in most cases a very important problem
consists of using field data *. estimate the
transport functions (such as & and \ ) and
perhaps birth/death parameters in f.

We have successfully applied the spline methods
outlined above in conmnection with (1) and ()
to such problems (Banks and Kareiva, 1982Q).

In addition to (Banks and kKareiva, 1982), one
may consult (Banks, 1981), (Banks, Crowley,

and Kunisch, 1981) for the theory behind our
efforts. Briefly, one rewrites (8) in the

form (1) in the Hilbert space I = L,(0,1)

and then uses the approximating equafion

(2) - in this case we employed cubic splines

b




for the basis elements in :h - with the data
te estimate the unknown transport functions.
For the resulting finite dimensional problems
we emploved a standard IMSL package (2ZXSSQ)
for the Levenberg-Marquardt algorithm in our
parameter search for a fixed level of approx-
imation N. In the particular problems we
investigated, we hypothesized equation (8)

in which V = V(x), @ is constant, and f
contains piecewise linear (in wu) terms with
spatially dependent coefficients. We also
hyvpothesized unknown parameters in the initial
population density. Our early efforts with
field data collected by P. Kareiva (the
experiments involved the dispersal of flea
bectles in cultivated collard patches) re-
vealed that models such as (8) with a spa-
tially dependent V vield significantly
better fits to the data than do models with

V' vanishing or chosen as some nontrivial
constant. Our more recent efforts (detailed
in (Banks and Kareiva, 1982)), again using
the flea beetle data, invelve the particular
equation (obtained from (8) after some trans-
formations and assumptions)

2 3 ?
- ql;_% * q ()5n + ag(xu + g(t,x) (9]

for t > 0, 0 < x < 1. The function q, Iis

<

assumed to have the form

-y (X-.5) Sl x5+ L

q,(x)
- 0 otherwise,

where Y <~ 0, and ¢ contains an appropriate
death rate term (modést death rates within the
vegetation patch, high death rate outside the

patch) in additionto a term involving q}

The function g «contains terms -

arising from standard transformations
of (8) with nonhomogeneous boundary conditions
to (9) with homogeneous conditions. The cubic¢
spline-based estimation techniques have per-
formed extremely well in our efforts to esti-
mite ql. qz, Q5 as well as the initial con-

ditions from the data. The methods were very
stable and rapidly convergent, vielding sat-
isfactory estimates for low (N = 8,16) values
of the approximation index.

There is strong evidence (Dobzhansky and
colleagues, 1979),(Aikman and Hewitt, 1972)
of the need in certain population studies to

estimate time dependent transport coefficients.

Our cubic spline methods can be developed for
these problems (see (Banks and Daniel, 1981b)
for preliminary theoretical results} and we
are currently pursuing investigations along
these lines.

There are also numerous important control
problems arising in the context of ecological
investigations. Once an adequate model is
developed (the parameter estimation problem),
one might wish to estimate (calculate) the
optimal vegetation density in a patch in
order to hold population levels in the patch
to a minimum, or at least below some given
level. We believe that the methods discussed

here will also prove useful in these problems.
PARAMETER ESTIMATION IN ELASTIC STRUCTURLS

We turn finally to a brief discussion of use
of cubic and quintic spline schemes for pura-
meter estimation problems arising in the stug.
of elastic and viscoelastic bodies. Our
interest in such problems was motivated b
discussions with NASA engineers who desirc
to estimate material properties for laryc
space structures from observations of the
motions of these structures. The sinplest
components of these antennac and space =ta
tions are beam-like and made from composite
materials (e.g. graphite epoxy!. Thus as
basic problem, we (Banks and Crowleyv, 1981
considered estimation 1n equations such as
those arising in the Euler-Bernoulli theor:
for transverse vibrations of a thin elastic
or viscoelastic beam which is¢ possibly sub-
ject to damping. More precisely, the well-
known equations for the transverse vibrations
of a thin elastic beam (no dampingi are

A

PRI
ax”
m 3 E + 33$7= fig,t,x)
ot~ ax”

where 4 1is the bending moment, m is the
mass per unit length and f 1is the applied
load. Two types of damping are included in
our formulation. The first is simply viscous
damping Yu( while the second is structural

damping. For a Voight solid (the simplest
viscoelastic model) one has the constitutive
relationship ¢ = Ee + ¢t Thus the stress
0 is no longer proportional to the strain
alone (as in Hooke's law) but a term propor-
tional to the strain velocity is added. In
this case the usual Euler-Bernoulli formula-
tion becomes

Y

{ 3 :
4= oyaa =1 &8 Lo 2
/ ox” axTat
This results in the equation
33 a2 -3
mutt < (EI c E + ¢l Fﬁu 1o tug = t, 1o
ax” ax” ax“ ot

which can be rewritten in the form (1' in the

S
Hilbert space I = H™ » L,
and tested estimat.ion schémes (for estimation
of parameters such as El/m, cI/m, Y/m) using
cubic and quintic spline approximation sub-

spaces -N modified to treat various impor-
tant boundary conditions (simply supported.
cantilevered, as well as beams with applied
moments at one end). The methods proved
extremely efficient as the detailed presenta-
tion in (Banks and Crowley, 1981) documents.

While the Euler-Bernoulli equation (10) is
applicable in many applications (especially
large space structures), a somewhat more

We have developed

TN ~




involved analysis is required in situations
where rotatory inertia and shear effects play
a significant role in the dynamics. This
theory is often necessary when high frequency
oscillations of the beam must be considered
(e.g. in aerodynamic structures). In this
event the Timoshenko formulation is more
appropriate. This theory can be embodied in
a single higher order equation (fourth order
in t and x derivatives] where the boundary
conditions for even the simply supported beam
involve second order derivatives in both x
and t. For our purposes it is much more
desirable to treat a system of lower order
RAEALLY
equations with the corresponding boundary
conditions. The equations modeling transverse
vibrations of a homogeneous isotropic elastic
beam, including rotatory inertia and shear
effects, can be written in terms of the
transverse displacement » and the angle &
of rotation of the beam cross section from
its original vertical position as

Yep T aly - )
tt XX X (1)
- 5
Yoy T b“vxx +c (yx - y)

with the boundarv conditions for, sav, a
fixed end beam given by y(t,0) = ¥(t,1) = 0,
-

w(t,0) = 4(t,1}) = 0. Here a~ = kh'AG/m,
~ I

5
b = EI/m, ¢~ = Aa"/1 with A = cross sec-
tional area, E = Young's modulus, G = shear
modulus, I = momeat of inertia, and \' =
shear coefficient.

Equation (11) can be rewritten in the form

(1) in the Milbert space I = Hi x L,» Hy »
L, and then cubic spline schemes can be
applied (the approximating equations again
have the form (2)) to estimate parameters

such as a, b, and c¢. We did this (Banks

and Crowley, 1981} and once again extremely
efficient algorithms resulted in very accurate
estimates.

CONCLUSION

We have outlined above several problems to
which our spline based approximation tech-
niques can be applied with great success.
Both theoretical and numerical findings (some
reported in the literature cited, some as yet
unreported in manuscripts) support our claim
that these methods have even wider applicabi-
lity than we have indicated here. For ex-
ample, we are currently successfully applying
the methods for estimation of parameters in
nonlinear FDE (Banks and Daniel, 1981a) to
the study of models for the enzyme column
reactors as discussed in (Banks, 1981),
(Daniel, 1981). As one might anticipate from
the elasticity examples mentioned above, both
the theoretical soundness and computational
feasibility of our methods have been demon-
strated for hyperbolic systems. In particular,
we have successfully developed the theory and
computational packages to treat test problems
in seismic inversion (see (Banks, 1981))

in which not only the parameter E .n
= (Euxlx’ but also parameters kl’ k.

Yre
in elastic (ux(t,U] + klu(t,0J=U» and

absorbing (ut(t,ll . k,ux(t,l\ = i) boundar

conditions must be identified from datu.

A general theory plus numerical results ob-
tained when applyving our approximation
methods to nonlinear hyperbelic and paraboi:c
PDE can be found in (Banks and hunisch, 148!
(Banks, Crowlev, and kunisck, 1981). Other
areas of application in which we have alread.
used or are currently using these spline
based methods include estimation problems for
transport of labelled substances in brain
tissue, determination of static antenna con
figuration and shape, and estimation of porc-
sity and permeability in porous media.
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